
Guided Path Exploration for Regression Test Generation
Kunal Taneja Tao Xie Nikolai Tillmann Jonathan de Halleux Wolfram Schulte

ktaneja@ncsu.edu xie@csc.ncsu.edu nikolait@microsoft.com jhalleux@microsoft.com schulte@microsoft.com

Problem:
Regression test generation aims at generating a test suite that can

detect behavioral differences between two versions of a program
Regression test generation can be automated by using Dynamic

Symbolic Execution (DSE)
It is often expensive for DSE to explore paths in the program to

Program Instrumentation for State Checking
public boolean testMe(int x, int[] y)
{

….
if (x == 110) {

x = 2 * j + 1;
PexStore ValueForValidation("uniqueName" x);

10
11
12achieve high structural coverage

Solution: Guided Path Exploration specifically for finding behavioral
differences

Pruning paths that cannot help in finding behavioral differences

Approach
Adopt the PIE model [1] for finding irrelevant paths that cannot help in

finding behavioral differences

PexStore.ValueForValidation(uniqueName , x);
}
….

}
Instrumented new version of the program

Program instrumented for both versions
DSE performed on the modified version
As soon as a test is generated, it is executed on the instrumented original

version to check whether program state is infected

12
13

g
PIE model: A fault can be detected by a test if a faulty statement is

executed (E), the execution infects the state (I), and the infected state
propagates to an observable output (P)

Prune paths that cannot help in satisfying any of P, I, or E condition

Preliminary Evaluation
Prototype parts of our approach by manually inserting probes in program

code to guide Pex [2] to avoid exploring branches in Categories E and I in
the program code

Use the tcas program (converted to C#) from the Software Infrastructure
Repository (SIR) [3] as our subject

Seed the first 11 faults available at SIR one by one to generate 11 new

Pruning of Branching Nodes
DSE’s path exploration realized by flipping branching nodes
Avoid from flipping branches of three categories: Seed the first 11 faults available at SIR one by one to generate 11 new

versions of tcas

Compare the number of runs of DSE required by the default search
strategy in Pex with the number of runs required by our approach for E

Compare the number of runs required by the default search strategy in
Pex with the number of runs required by our approach to achieve I

Avoid from flipping branches of three categories:
Category E: branching nodes whose the other unexplored branch
cannot lead to any changed region
Category I: If a changed region is executed but the program state is
not infected, all the branches nodes after the changed region in the
current execution path
Category P: Let χ be the statement at which change propagation stops.
All the branches nodes after Statement χ in the current execution path

Results
Example

static public int testMe(int x, int[] y)
{

int j = 1;
if (x == 90){

for (int i = 0; i < y.Length; i++){
if (y[i] == 15)

x++;
if (y[i] == 16)

j = 2;
References

RQ1. On average, our approach requires 12.9% fewer runs (maximum
25%) to achieve E

RQ2. On average, our approach requires 11.8% fewer runs (maximum
31.2%) to achieve I

Details of results and versions of tcas available at project web page [4]

1
2
3
4
5
6
7 j = 2;

if (y[i] == 25)
return x;

if (x == 110)
x = j + 2; //x = 2*j+1

if (x > 110)
return x;

}
}
return x;

}
Example Program Control Flow Graph

7
8
9
10
11
12
13
14
15
16

1. J. Voas. PIE: A dynamic failure-based technique. IEEE Transactions on
Software Engineering, 18(8):717–727, 1992.

2. N. Tillmann and J. de Halleux. Pex-white box test generation for .NET.
In Proc. International Conference on Tests and Proofs, pages 134–153,
2008.

3. H. Do, S. Elbaum and G. Rothermel, "Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and its
P t ti l I t" E i i l S ft E i i A I t ti lExample Program Control Flow Graph

Category E: Red dotted branches as after taking these branches,
program execution cannot lead to Statement 11.
Category I : If program state not infected after execution of Statement
11 (such as for inputs x: 90, y [20]: {15, 15, 15, ….., 15}), the branches
in the execution trace after the execution of Statement 11 (Branch
<12,3>).

Potential Impact", Empirical Software Engineering: An International
Journal. 10(4):405-435, 2005.

4. Project Web Page:
https://sites.google.com/site/asergrp/projects/regtestgen

https://sites.google.com/site/asergrp/ NCSU ASE Supported in part by NSF grant CCF-0725190 and ARO grant W911NF-08-1-0443

)
Category P : The branches in the execution trace after the execution of
propagation stopping statement

